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NONSTEADY METHOD OF DETERMINING HEAT FLUX 

S. D. Skakun and G. A. Surkov UDC 536.2.083 

A method is described for determining intense heat flux, based on solution of the 
linearized heat-conduction equations. The data obtained are compared with data 
determined by the steady calorimeter method and the quasisteady method. 

In present practice intense heat flux is measured by a number of techniques which have 
certain defects as well as advantages. 

For example, the steady types of calorimeters are typically of complex construction and 
have definite cooling limitations in large heat-flux conditions, i.e., it is impossible to 
eliminate the maximum heat rate in a short time interval (because of the properties of the 
calorimeter material). Therefore, nonsteady methods of measuring intense heat flux have been 
developed recently. In particular, it was proposed in [i] to measure heat flux using a sen- 
sor which is so short that the temperature difference between the front and back walls would 
be negligible. This assumption will be valid only for a thin-walled sensor [2]. Otherwise, 
measurement of a large heat flux can introduce considerable error. For a thin sensor the 
measurement of heat flux requires the use of high-speed recording equipment and materials to 
withstand a large heat load, because of the absence of heat removal. 

In [3] it has been suggested to measure heat flux by the use of quasistationary heat 
conditions. It should be noted that the assumption of equality of heating rates on the for- 
ward and rear sensor walls is based on solution of the linear heat-conduction equation. This 
assumption breaks down if nonlinearity is taken into account. Experiments have also con- 
firmed that the rate of heating of a body differs at each point. Therefore, first of all, 
this method is based on an a priori incorrect assumption and, therefore, contains an a priori 
inherent error. Secondly, for the formula q = opC(dt/d~), on which the theory of this method 
is based, to apply, it is necessary that the temperatures and the heating rates be the same 
throughout the entire body. But if we assume that the heating rates are equal at all points 
of the body, as the quasistationary method suggests, the temperatures at the forward and rear 
walls will be quite different. Therefore, at these points there will also be different val- 
ues of specific heat capacity, and this must be accounted for in determining the heat flux. 
However, this difference cannot be accounted for in the above equation. Therefore, there is 
an additional error in the method. 

Several papers have proposed to determine heat flux using sensors containing several 
thermocouples. For example, a method was proposed in [4-6] for measuring heat flux using 
sensors containing four thermocouples. This method differs from those described above in 
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that it takes into account the nonlinearity of the heat-conduction equation. However, this 
method requires a large volume of computation on a high-speed computer. 

Another method differing somewhat from those proposed above was suggested in [7], the 
object being to reduce the number of included thermocouples: the method is based on solu- 
tion of the nonlinear heat-conduction equation, linearized to a high degree of accuracy. 

For example, for a sensor with two thermocouples, one close to the heated surface and 
the other on the opposite surface, to determine the desired heat flux one must solve the fol- 
lowing system of equations: 

a - -  i -  - oo a~a~ (R~ < x < R~, �9 > 0), 

03!~=o : 0 (RI < x < R2), 

oo< =o, 
a T '  ;T----o 

1 Co O,~I.,.=R, = 2~R, (T) + - ~  + ~ ,  ('~) 

O~l,=m = 2,T,m ('0 + ~- Co ~ q~:. ('~) 

(1) 

(2) 

(3)  

= *R,  (a:), (4) 

- -  *R;  ('0, ( 5 )  

where 

O~ (x, ~) = 20 (x, T) + -2- Co- -r 00- (x, ~); 0 (x, ~) = t (x, ~) - -  G; (6) 

ao is the thermal diffusivity, at the initial temperature to; ~ RI(T) and ~R2(T) are the 
temperature fields determined experimentally at the points x = RI and x = R2, respectively; 
%o, %1, Co, andC~ are the coefficients of the equations 

~ (O) : Xo + ~'1 O, ( 7 ) 

C(O) -- Co + QO. (8) 

Restricting ourselves to derivatives of the functions ~R:(T) and ~R2(T) of only the 
first order, the solution of the system of equations (1)-(5) has the form 

O~ (x, T) = CR, (T) R., - -  x x - -  R~ 
R., - -  R-----~ + * m  (~) R, - -  R, 

+ ~ ,  (~) (R.~ - -  x )  3 - -  (R., - -  R,)2(R.,  - -  x )  .+. 

6ao (R.,, - -  R1) 

+ ,,(~) (x-- RY- -  (R2--RO~(x-- R,) 
6ao (R~ - -  R1) 

----+ 

(9) 

and Fourier's law gives the following formula for the desired heat flux: 

q = - -  [~o + ~ (t ~, ~)--  ~)] x 

*=o" (i0) 

This method has a number of advantages over the methods described above. 
high accuracy, because it allows for nonlinear terms in the heat-conduction equation. Sec- 
ondly, the solutions of Eq. (9) and formula (i0) are so simple that one need only use very 
simple computational methods. Finally to determine the desired heat flux it is enough to 
have only two measurement points in the sensor, which simplifies the experiment. In addi- 
tion, the method permits determination of heat flux throughout the whole time of operation 
of the heat source. 

First, it has 
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Fig~ 2. Heating characteristics of the calorimeter at the 
points x = 2 (i), 8 (2), 13 (3), and 19.5 m~ (4). 

Fig. 3. Results of computed heat flux: i) steady-state 
calorimeter; 2) using Eq. (I0); 3) using Eq. (17); 4) using 
the quasisteady technique. 

It should be noted that without exception all of the techniques described require know- 
ledge of the temperature dependence of the thermophysical characteristics of the sensor mate- 
rial, in order to increase the accuracy of heat-flux determination. However, it is often as- 
sumed in practice that the temperature dependence of the thermophysical characteristics of 
the sensor material is unknown. Nevertheless, the heat flux must be determinedo 

We now examine this question. As a basis for our theory we will take the linear heat- 
conduction equations of order greater than the second, as described in [8]. For example, if 
the sensor body contains three thermocouples, one must solve a system of equations of the 
following type: 

O~O 080 
- -  - - -  ( p l < x < R 3 ,  " c > 0 ) ,  

OxO* ao Ox 3 

OI.~=o = 0 (RI < x < R3), 

OI~=R, = % ('0 (-c > 0), 

Ol~=R~ = % (T) (~ > 0), 

Olx=~, = % (~) (T > 0), 

(11) 

(12) 

(13) 
(14) 

(15) 

where O(x, T) = t(x, T)--to; ao is the thermal diffusivity of the sensor material, at tem- 
perature to; ~1(m), 9 2(~), and 93(T) are the temperatures as functions of time, determined 
experimentally at the points x = RI, x = R2, andx = R3, respectively. 

Since the system of equations (11)-(15) is linear, there are no difficulties in the solu- 
tion. It is convenient here to use Laplace transforms, which lead to the following solution: 

T ] ( R 3  - -  X)(X - -  R 1 )  (X - -  R I ) ( ~  ~ - -  X) , 

+ [~i (~) - -  ~2 (x)] (R~--x)(x--R1)[(x--R1)~+(R~--x)2--(R1--R2)~--(Rs--Rz)*] 

24ao(Rs--Rz) (R1--Rz)  

4 6 3  



+ [q~l (~) -- ~p~(~)] ( x - - R I ) ( R 2 - - x ) [ ( x - - R 1 ) ~ - } - ( R ~ - - x ) 2 - - ( R s - - R ~ ) 2 - - ( R 3 - - R I )  21 
(16 )  

24ao (R3 - -  R~) (R ,  - -  RI) 

Here, as was done in the solution of Eq. (9), we can restrict ourselves to derivatives 
of the functions ~I(T), ~2(T), and ~3(T) of first order. This restriction is valid in that 
any of the curves ~ I(T), �9 2(T), and ~3(T) can be approximated by a straight line in a 
small time interval At. In this case the heat flux is determined, as usual, by the formula 

at (17) 
q = - -  k (t) -~x ~=o" 

To verify solution (16) and Eq. (17), we carried out an experiment (Fig. i). A copper 
calorimetric sensor of length 20 mm and diameter 6 mm was mounted at a specific distance 
from the end of the nozzle of an electric arc air heater, located in a thermally insulated 
bushing around its forward end surface. Four thermocouples were included along the sensor, 
at distances 2, 8, 13, and 19.5 mm from the coordinate origin. The temperatures curves taken 
with a type N-700 oscilloscope at these points are shown in Fig. 2, while Fig. 3, curve 3 
shows the variation in heat flux as a function of time. Curve 2 of Fig. 3 shows the varia- 
tion of the heat-flux values determined by means of Eq. (i0). 

Experiments were carried out analogously with a water-cooled calorimeter. The heat flux 
obtained from these experiments is shown by curve i. If we consider the readings of curve i 
to be the most probable, as is assumed in experimental investigations, then Fig. 3 shows that 
the maximum deviation of curves 2 and 3 from curve i in the time interval 0 < T < 0.5 is on 
the order of 7%, which can be considered a satisfactory agreement. Finally, curve 4 shows 
the heat flux determined by the quasisteady method [3]. As was expected, the deviation of 
curves i and 4 are the largest, on the order of 14%. 
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